
University College London
Department of Computer Science

Cryptanalysis Lab 4

J. P. Bootle

Copyright c© 2016 jonathan.bootle.14@ucl.ac.uk
March 8, 2017 Version 2.0

mailto:jonathan.bootle.14@ucl.ac.uk

2

The LLL Algorithm

Given a set of basis vectors S = x1, . . . ,xn with integer entries, we can
form a lattice L by taking all integer linear combinations of vectors
in S. The picture below shows a lattice generated by vectors in Z2.
The same lattice can be generated by u1,u2, or by v1,v2.

The LLL algorithm takes a collection of ‘bad’ basis vectors for

JJ II J I Back

3

lattice, such as v1,v2, and tries to generate a set of ‘good’ basis vectors
for the lattice, such as u1,u2, which are much shorter, and close to
being perpendicular.

In the next two questions, you will use the LLL algorithm to solve
problems related to cryptography.

A Knapsack-Based Hash Function

We can try to construct a hash function based on the hardness of
solving the Knapsack problem.

Let a1, . . . , an be positive integers. Given a positive integer s, we
might ask whether there exist x1, . . . , xn ∈ {0, 1} such that

∑n
i=1 aixi =

s. This is a special case of the knapsack problem, and it is NP-
complete, which suggests that the function (x1, . . . , xn) 7→

∑n
i=1 aixi

might be difficult to invert, and have some of the properties of a good
hash function.

Concretely, we create a hash function by choosing random values
for the a1, . . . , an. We hash values (x1, . . . , xn) ∈ {0, 1}n to {0, 1}k by
computing s =

∑n
i=1 aixi, and then taking the binary digits of s as

JJ II J I Back

4

output.
Click on the green letter before each question to get a full solution.

Click on the green square to go back to the questions.

Exercise 1.

(a) Implement a function ‘Parameters’ which takes integers n, µ as
input, and generates n random µ-bit integers a1, . . . , an for use in
a knapsack-based hash function.

(b) Create a function ‘KnapsackHash’ which implements the knapsack-
based hash function described above. Your function should take
the output of part a) and a value to hash, and produce a hash
value.

(c) Consider the lattice generated by the rows of the following matrix,
for some large value K.

Ka1 1 0 · · · 0
Ka2 0 1 · · · 0

...
...

...
. . .

...
Kan 0 0 · · · 1


JJ II J I Back

5

How might finding a short vector in this lattice help to find a
collision in the knapsack hash function?

Hint: What happens if we find a short vector with first com-
ponent zero, and the other components 1 or −1?

(d) The LLL algorithm can be applied to a matrix M by writing
M.LLL(). On input a square matrix of row vectors, the LLL algo-
rithm produces a new matrix, where the first row is a short vector
in the lattice. Write a program which uses the LLL algorithm to
break a knapsack hash function with params = Parameters(n,mu)

for (n,mu) = (10, 10), (20, 20), (40, 40). What are the largest val-
ues of (n,mu) for which your program finds a collision?

Finding Polynomials with Small Coefficients from Approxi-
mate Roots

Taken from Algorithmic Cryptanalysis, Chapter 13, Exercise 1:
Consider the floating point number:

x = 8.44311610583794550393138517.

JJ II J I Back

6

Show that x is a close approximation of a real root of a polynomial of
degree 3, with integer coefficients bounded by 20 (in absolute value).

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 2.

(a) With the collision matrix from the previous question in mind,
design a matrix containing the powers of x, where a short vector
in the lattice is likely to produce a polynomial of degree 3, with x
as a root.

(b) Apply the LLL algorithm to your matrix to find the polynomial.

Elliptic Curve Factorisation Algorithm

Click on the green letter in front of each sub-question (e.g. (a)) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 3. In this exercise, you will use Sage to explore how integers
are factored using elliptic curves.

JJ II J I Back

7

(a) To create an elliptic curve Ep defined by y2 = x3 +ax+b over Fp,
use E = EllipticCurve(GF(p),[a,b]). Create an elliptic curve
Ep defined by y2 = x3 + x+ 4, over the finite field of size 11.

(b) To create a curve EN defined by y2 = x3 + ax + b over ZN , use
E = EllipticCurve(Integers(N),[a,b]). Create a curve EN
defined by y2 = x3+x+4, over the ring of integers modulo 438713.

(c) Type PN = EN(100584, 115601) to create the corresponding
point on EN . Similarly, type Pp = Ep(100584, 115601) to create
the same point, reduced modulo 11, on Ep. Type Pp to view the
point modulo 11. The point should be expressed as (x : y : 1).
The point at infinity is (0 : 1 : 0).

(d) Type Ep.cardinality() to find out the number of elliptic curve
points modulo 11. What is the number of points? Type a*Pp to
compute multiples of the point Pp. What is the order of Pp in
the elliptic curve group Ep?

(e) Set QN = 8 ∗ PN and use SAGE to compute QN . Now, try
to compute 9 ∗ PN = QN + PN . What happens? Compute the
difference between the x coordinates of PN and QN , and compute
the greatest common divisor of this with N . Look at the formulae

JJ II J I Back

8

for adding elliptic curve points. Does this explain the error?
(f) Set N = 20077. Consider the curve E defined by the equation

y2 = x3 + x + 5. Assume that N has a prime factor p with
| E(Zp) | being 5-powersmooth. Given that P = (427, 466) is a
point on E(ZN), factor N .

JJ II J I Back

9

Solutions to Exercises

Exercise 1(a) The following code implements the ‘Parameters’ func-
tion.

def Parameters(n,mu):
A = list();
for i in range(0,n):

A.append(randint(0,2**mu-1))
return [vector(A),n,mu]

�

JJ II J I Back

Solutions to Exercises 10

Exercise 1(b) The following code implements the knapsack hash
function.

def KnapsackHash(params,x):
A = params[0]
n = params[1]
mu = params[2]
k = ceil(log(n,2))+mu
if n != len(x):

return ”The input vectors are not the same length!”
z = 0;
for i in range(0,len(x)):

z = z + A[i]*x[i];
z = z.bits()
while len(z) < k:

z.append(0)
return z

�

JJ II J I Back

Solutions to Exercises 11

Exercise 1(c) Following the hint, since K is large, short vectors in
the lattice are likely to have first component equal to zero. Otherwise,
the first component would be a large number, as a multiple of K.
This means that a short vector is likely to involve finding a linear
combination of the ai which is equal to zero. The other components
of the vector tell us the coefficients in this linear combination. If the
other components are all 1 or −1, then we can rearrange the linear
combination to find two binary inputs which hash to the same output
value. �

JJ II J I Back

Solutions to Exercises 12

Exercise 1(d) The following code implements a collision finder.

def BreakKnapsackHash(params,K):
#Choose large positive integer K

A = params[0]
n = len(A)
B = matrix(A).transpose()
C = matrix.identity(n)
M = block matrix([[K*B,C]])
L = matrix(list(M.LLL()))
L = L[0]

if L[0] != 0:
return ’fail’

L = list(L)
L.remove(0)
for entry in L:

#(continued on next page)

JJ II J I Back

Solutions to Exercises 13

if abs(entry) > 1:
return ’fail’

X1 = matrix([[abs(L[i]>0) for i in range(0,len(L))]])
X2 = matrix([[abs(L[i]<0) for i in range(0,len(L))]])
return matrix(list(block matrix([[X1],[X2]])))

�

JJ II J I Back

Solutions to Exercises 14

Exercise 2(a) 
bKe 1 0 0 0
bKxe 0 1 0 0
bKx2e 0 0 1 0
bKx3e 0 0 0 1


Apply the LLL algorithm to the lattice. The first element in our
reduced basis has the form (ε, a0, a1, a2, a3), where ε = a0bKe +
a1bKxe+a2bKx2e+a3bKx3e and ε is quite small. Dividing by K, this
suggests that x is a close approximation to a root of the polynomial
with coefficients ai. �

JJ II J I Back

Solutions to Exercises 15

Exercise 2(b) Section 13.1.2.2 of Algorithmic Cryptanalysis suggests
using K ≥ (max |ai|)2d where d is the degree of the polynomial. So
in our example we can take K = (20)6 = 64 × 106. This gives us a
matrix: 

64000000 1 0 0 0
540359431 0 1 0 0
4562317413 0 0 1 0
38520175629 0 0 0 1


Apply the LLL algorithm. For your own sanity, use SAGE rather

than trying to do LLL by hand. Create a matrix A as above, do
A.LLL() and look at the first row. This is (−3,−10,−11,−7, 1), cor-
responding to x3− 7x2− 11x− 10. Check for yourself that x3− 7x2−
11x− 10 is extremely close to 0. �

JJ II J I Back

Solutions to Exercises 16

Exercise 3(a) Use Ep = EllipticCurve(GF(11),[1,4]) to produce
the correct elliptic curve. �

JJ II J I Back

Solutions to Exercises 17

Exercise 3(b) Use EN = EllipticCurve(Integers(438713),[1,4])

to produce the correct curve. �

JJ II J I Back

Solutions to Exercises 18

Exercise 3(d) There are 9 points on the elliptic curve Ep defined
modulo 11. The order of a group element divides the order of the
group, 9, and Pp is not the point at infinity, so we only have to check
whether 3 ∗ Pp is equal to the point at infinity or not. However,
3 ∗ Pp = (3 : 1 : 1), so 3 is not the order of Pp. Therefore, the order
of Pp is 9. �

JJ II J I Back

Solutions to Exercises 19

Exercise 3(e) You can use a = randint(0,1009) to get a. �

JJ II J I Back

	 Solutions to Exercises

